

DYNAMICS OF OCEAN STRUCTURES

PROF. SRINIVASAN CHANDARSEKARAN

Department of Ocean Engineering **IIT Madras**

INTENDED AUDIENCE: Any interested learners.

COURSE OUTLINE:

The course will give a brief overview of different types of ocean structures that are deployed in sea for exploiting oil, gas and minerals. While fundamentals of structural dynamics are discussed, detailed mathematical modeling of ocean structures and their dynamic analysis under waves, wind and current are highlighted with special emphasis to fluid-structure interaction. Introduction to stochastic dynamics of ocean structures is also discussed with lot of tutorials and sample papers that shall intuit self-learning through the course. Focus is on the explanation of fundamental concepts as addressed to graduate students.

ABOUT INSTRUCTOR:

Prof. Srinivasan Chandrasekaran is a full professor (HAG) and is well-known academician with a teaching and research experience of about 30 years. He has authored about 17 text books, and 170 journal papers in the domain of structural engineering. His NPTEL courses are very popular and has benefitted more than about 50,000 participants, in both India and abroad. Lectures of the course will be delivered in class-room style, for which the instructor is very popular. Extensive support for Matlab program with computer codes and solved examples will be discussed by the dels-developed codes by the instructor.

COURSE PLAN:

Week 1: Introduction to offshore structures

Environmental loads Structural action

Week 2: Single degree-of-freedom

Equation of motion

Free vibration of SDOF systems

Week 3: Damped and undamped forced vibration

Damped forced vibration Response build up

Week 4: Numerical examples

Numerical examples- MDOF

Week 5: Eigen value problems

Orthogonality of modes Numerical methods in MDOF

Week 6: Influence coefficient method

Stodla method Rayleigh method Modal response of MDOF

Week 7: Rayleigh damping

Caughey damping

Damping by super-positioning

Duhamel integral

Model super position and Truncation

Missing mass correction

Week 8: Fluid structure interaction

Retrofitting and Rehabilitation

Earthquake forces

Week 9: Articulated towers

Fluid structure interaction application in ocean structures Response control of compliant structures (MLAT)

MLAT with passive damperss

Week 10: Tension leg platforms
Fluid-structure interaction

Dynamic analysis for springing and ringing

Week 11: Numerical integration

Dynamic analysis offshore triceratops

Stochastic process

Week 12: Response spectrum

Return period Fatigue damage