Course Name: Artificial Intelligence: Knowledge Representation And Reasoning

Course abstract

An intelligent agent needs to be able to solve problems in its world. The ability to create representations of the domain of interest and reason with these representations is a key to intelligence. In this course we explore a variety of representation formalisms and the associated algorithms for reasoning. We start with a simple language of propositions, and move on to first order logic, and then to representations for reasoning about action, change, situations, and about other agents in incomplete information situations. This course is a companion to the course “Artificial Intelligence: Search Methods for Problem Solving” that was offered recently and the lectures for which are available online.


Course Instructor

Media Object

Prof. Deepak Khemani

Deepak Khemani is Professor at Department of Computer Science and Engineering, IIT Madras. He completed his B.Tech. (1980) in Mechanical Engineering, and M.Tech. (1983) and PhD. (1989) in Computer Science from IIT Bombay, and has been with IIT Madras since then. In between he spent a year at Tata Research Development and Design Centre, Pune and another at the youngest IIT at Mandi. He has had shorter stays at several Computing departments in Europe. Prof Khemani’s long-term goals are to build articulate problem solving systems using AI that can interact with human beings. His research interests include Memory Based Reasoning, Knowledge Representation and Reasoning, Planning and Constraint Satisfaction, Qualitative Reasoning and Natural Language Processing.
More info

Teaching Assistant(s)

No teaching assistant data available for this course yet
 Course Duration : Jan-Apr 2022

  View Course

 Enrollment : 14-Nov-2021 to 31-Jan-2022

 Exam registration : 13-Dec-2021 to 18-Mar-2022

 Exam Date : 23-Apr-2022

Enrolled

Will be announced

Registered

Will be announced

Certificate Eligible

Will be announced

Certified Category Count

Gold

Will be announced

Silver

Will be announced

Elite

Will be announced

Successfully completed

Will be announced

Participation

Will be announced

Success

Elite

Gold





Legend

Final Score Calculation Logic

Enrollment Statistics

Total Enrollment: 17080

Assignment Statistics




Score Distribution Graph - Legend

Assignment Score: Distribution of average scores garnered by students per assignment.
Exam Score : Distribution of the final exam score of students.
Final Score : Distribution of the combined score of assignments and final exam, based on the score logic.